创建或修改目录:/www/wwwroot/104.219.215.234/data 失败!
快播伦理片 渠凤丽老师简介 - 欧美无码
  • 首页
  • 影音先锋下
  • 吉吉影音色情
  • 吉吉影音电影
  • 吉吉影音播放
  • 色吉吉影音
  • 吉吉影音成人
  • 你的位置:欧美无码 > 影音先锋下 > 快播伦理片 渠凤丽老师简介

    快播伦理片 渠凤丽老师简介

    发布日期:2024-11-01 12:07    点击次数:96

     快播伦理片快播伦理片

    渠凤丽,老师

    曲阜师范大学 化学与化工学院 老师、后生长江学者

    邮件:fengliquhn@hotmail.com

    培植布景

    2003.09-2008.06 湖南大学 分析化学专科 博士

    1999.09-2003.07 曲阜师范大学 化学专科 学士

    责任经验

    2014.12-于今 曲阜师范大学化学化工学院,老师

    2010.12-2014.12 曲阜师范大学化学化工学院,副老师

    2019.02-2020.02 国度当然科学基金委,流动编制容貌主任

    2013.06-2014.08 好意思国普林斯顿大学,走访老师

    2008.10-2009.10 法国国度科学辩论中心,博士后

    辩论领域

      生物传感&纳米探针:酶传感、核酸传感、癌症及弊端疾病记号物分析在生物分子固定化、纳米生物传感界面构建、细胞生化分析等方面具有丰富的辩论造就。拓荒了多种新式具有高智谋度、高聘请性的生物传感器,促进了生物分析化学和纳米分析化学的学科发展,为热切生物小分子及疾病记号物的检测提供了智谋高效的分析技巧。

    东谈主才称呼

    1. 长江学者后生大师 (2020 年)

    2. 山东省“泰山学者”后生大师(2019 年)

    3. 山东省有荒谬孝敬的中后生大师(2015 年)

    主合手科研容貌

    1. 国度当然科学基金面上基金:内标型上周折酶纳米探针的构建及缺血性脑卒中疾病关系酶活性定量检测及成像分析愚弄辩论(No. 21775089,64 万元,2018.01-2021.12),容貌崇拜东谈主

    2. 国度当然科学基金面上基金:名义增强荧光纳米复合薄膜可轨则备及高智营生物传感算作辩论(No. 21375076,80 万元,2014.01-2017.12),容貌崇拜东谈主。

    3. 山东省当然科学基金优秀后生基金:高智谋荧光生物传感算作辩论 (No. ZR2017JL010,30 万元,2017.08-2020.08),容貌崇拜东谈主

    4. 国度当然科学基金后生基金:介孔溶胶凝胶薄膜电化学可轨则备新算作及关系核酸适体生物传感器辩论(No. 21005047,19 万元,2011.01-2013.12),容貌崇拜东谈主

    5. 山东省要点研发筹划:基于石墨烯的电化学免疫传感器及微流控芯片用于前线腺癌的早期会诊(No. 2015GSF121031,10 万元,2016.01-2017.12),容貌崇拜东谈主

    6. 山东省大型仪器确立升级矫正容貌:地中海贫血基因突变分子传感新算作辩论(No.2011SJGZ23,6 万元,2011.10-2012.10),容貌崇拜东谈主

    7. 山东省优秀中后生科学家奖励基金:核酸适体电化学生物传感算作辩论(No. BS2010SW012,4 万元,2009.09-2012.09),容貌崇拜东谈主

    科研奖励

    1. 中国分析测试学会科学技巧奖二等奖(排行第一,2017 年)

    2. 第十届山东省后生科技奖(独处,2015 年)

    3. 山东省当然科学奖三等奖(排行第一,2013 年)

    4. 山东省高等学校优秀科研后果奖一等奖(排行第一,2013 年)

    5. 山东省高等学校优秀科研后果奖三等奖(排行第一,2012 年)

    6. 山东省软科学优秀后果奖一等奖(排行第一,2012 年)

    主要学术任职和社会兼职

    1. 山东省石墨烯产业学问产权保护定约通知长

    2. 山东鲁泰控股集团分子新材料研发高档参谋人

    3. 山东省青联委员

    4. 山东省科协委员

    教养情况

      主讲《分析化学 》、《分析化学现实 》等本科生中枢课程。近五年,完老本科课堂教养563 课时,遮掩 562 名学生。参编《化工专科本体资源库》,崇拜光分析法基本主意和原子光谱辐射分析两章本体。

    辩论生指导情况

      指导杀青业硕士辩论生 9 东谈主,在读博士辩论生 1 东谈主,在读硕士辩论生 10 东谈主。指导辩论生赢得山东省辩论生优秀科技翻新后果奖 (2 东谈主)、硕士辩论生国度奖学金 (5 东谈主)、山东省优秀硕士论文(2 东谈主)。

    论文目次

      迄今共发表通信作家或第一作家 SCI 论文 87 篇,SCI 高被引论文(Top 1%)24 篇,其中热门论文(Top 0.1%)10 篇,SCI 他引 4000 余次。

    [1] L. Guo, M. S. Liang, X. L. Wang, R. M. Kong, G. Chen, L. Xia *, F. L. Qu*, The tongs role of L-histidine: a strategy of grasping Tb3+ by ZIF-8 to design sensors for monitoring anthrax biomarker on-the-spot, Chem. Sci., 2020, 11, 2407-2413.

    [2] H. Wang, X. L. Wang, M. S. Liang, G. Chen, R. M. Kong, L. Xia*, F. L. Qu*, A boric acid functionalized lanthanide metal-organic framework as a fluorescence turn-on probe for selective monitoring of Hg2+ and CH3Hg+, Anal. Chem., 2020, 92, 3366-3372.

    [3] W. S. Kong, X. X. Guo, M. Jing, F. L. Qu*, L. M. Lu*, Highly sensitive photoelectrochemical detection of bleomycin based on Au/WS2 nanorod array as signal matrix and Ag/Zn MOF nanozyme as multifunctional amplifier, Biosens. Bioelectron., 2020, 150, 111875-111881.

    [4] X. X. Guo, J. H. Wu, L. Xia, M. H. Xiang, F. L. Qu*, J. Li, CuO/Cu2O nanowire array photoelectrochemical biosensor for ultrasensitive detection of tyrosinas快播伦理片, Sci. China Chem., 2020, 63 1012-1018.

    [5] X. M. Li, W. S. Kong, X. Qin*, F. L. Qu*, L. M. Lu*, Self-powered cathodic photoelectrochemical aptasensor based on in-situ synthesized CuO-Cu2O nanowire array for detecting prostate specific antigen, Microchimica Acta, 2020, 187, 325-333.

    [6] X. L. Tu, F. Gao, X. Ma, J. Zou, Y. F. Yu, M. F. Li, F. L. Qu*, X. G. Huang, L. M. Lu*, Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high performance electrochemical sensing platform for sensitive detection of carbendazim pesticide, J. Hazard. Mater., 2020, 396, 122776-122784.

    [7] X. L. Tu, Y. Xie, F. Gao, X. Ma, X. Lin, X. G. Huang*, F. L. Qu*, L. Ping, Y. F. Yu, L. M. Lu*, Self  template synthesis of flower-like hierarchical graphene/copper oxide@copper(II) metal-organic framework composite for the voltammetric determination of caffeic acid, Microchimica Acta, 2020, 187, 258-265.

    [8] F. Gao, X. L. Tu, X. Ma, Y. Xie, J. Zou, X. G. Huang, F. L. Qu*, Y. F. Yu, L. M. Lu*, NiO@Ni-MOF nanoarrays modified Ti mesh as ultrasensitive electrochemical sensing platform for luteolin detection,Talanta, 2020, 215, 120891-120898.

    [9] X. Ma, X. L. Tu, F. Gao, Y. Xie, X. G. Huang, C. Fernandez, F. L. Qu*, G. B. Liu, L. M. Lu*, Y. F. Yu, Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin, Sens. Actuators B: Chem., 2020, 309, 127815-127824.

    [10] W. S. Kong, F. L. Qu*, L. M. Lu*, A photoelectrochemical aptasensor based on p-n heterojunction CdS-Cu2O nanorod arrays with enhanced photocurrent for the detection of prostate-specific antigen, Anal. Bioanal. Chem., 2020, 412, 841-848.

    [11] Q. Q. Tan, R. R. Zhang, G. Y. Zhang, X. Y. Liu, F. L. Qu*, L. M. Lu*, Embedding carbon dots and gold nanoclusters in metal-organic frameworks for ratiometric fluorescence detection of Cu2+, Anal. Bioanal. Chem., 2020, 412, 1317-1324.

    [12] X. X. Guo, W. C. Yi, F. L. Qu*, L. M. Lu*, New insights into mechanisms on electrochemical N2 reduction reaction driven by efficient zero-valence Cu nanoparticles, J. Power Sources, 2020, 448, 227417-227422.

    [13] X. Ma, D. A. Chen, X. L. Tu, F. Gao, Y. Xie, R. Y. Dai, L. M. Lu*, X. Q. Wang, F. L. Qu*, Y. F. Yu, X. G.Huang, G. B. Liu, Ratiometric electrochemical sensor for sensitive detection of sunset yellow based on three  dimensional polyethyleneimine functionalized reduced graphene oxide aerogels@Au nanoparticles/SH-beta cyclodextrin, Nanotechnology, 2019, 30, 475503-475512.

    [14] L. Guo, Y. Liu, R. M. Kong, G. Chen, Z. Liu, F. L. Qu*, L. Xia*, W. H. Tan, A metal-organic framework as selectivity regulator for Fe3+ and ascorbic acid detection, Anal. Chem., 2019, 91, 12453-12460.

    [15] Y. Xie, X. L. Tu, X. Ma, Q. W. Fang, G. B. Liu, R. Y. Dai, F. L. Qu*, Y. F. Yu, L. M. Lu*, X. G. Huang, A CuO-CeO2 composite prepared by calcination of a bimetallic metal-organic framework for use in an enzyme  free electrochemical inhibition assay for malathion, Microchimica Acta, 2019, 186, 567-575.

    [16] H. T. Du, X. Y. Zhang, Z. Liu, F. L. Qu*, A supersensitive biosensor based on MoS2 nanosheet arrays for the real-time detection of H2O2 secreted from living cells, Chem. Commun., 2019, 55, 9653-9656.

    [17] L. Guo, Y. Liu, R. M. Kong, G. Chen, H. Wang, X. L. Wang, L. Xia*, F. L. Qu*, Turn-on fluorescence detection of β-glucuronidase using RhB@MOF-5 as an ultrasensitive nanoprobe, Sens. Actuators B: Chem.,2019, 295, 1-6.

    [18] W. S. Kong, Q. Li, L. Xia, X. M. Li, H. Sun, R. M. Kong*, F. L. Qu*, Photoelectrochemical determination of trypsin by using an indium tin oxide electrode modified with a composite prepared from MoS2 nanosheets and TiO2 nanorods, Microchimica Acta, 2019, 186, 490-498.

    [19] X. Q. Luan, H. T. Du, Y. Kong, F. L. Qu*, L. M. Lu*, A novel FeS-NiS hybrid nanoarray: an efficient and durable electrocatalyst for alkaline water oxidation, Chem. Commun., 2019, 55, 7335-7338.

    [20] X. X. Guo, S. P. Liu, M. H. Yang, H. T. Du, F. L. Qu*, Dual signal amplification photoelectrochemical biosensor for highly sensitive human epidermal growth factor receptor-2 detection, Biosens. Bioelectron., 2019, 139, 111312-111317.

    [21] Q. Q. Tan, W. S. Kong, H. Sun, X. Qin*, F. L. Qu*, Fluorometric turn-on detection of ascorbic acid based on controlled release of polyallylamine-capped gold nanoclusters from MnO2 nanosheets, Microchimica Acta, 2019, 186, 282-288.

    [22] X. Ma, F. Gao, G. B. Liu, Y. Xie, X. L. Tu, Y. Z. Li, R. Y. Dai, F. L. Qu*, W. M. Wang, L. M. Lu*, Sensitive determination of nitrite by using an electrode modified with hierarchical three-dimensional tungsten disulfide and reduced graphene oxide aerogel, Microchimica Acta, 2019, 186, 291-299.

    [23] Y. Xie, X. L. Tu, X. Ma, M. Q. Xiao, G. B. Liu, F. L. Qu*, R. Y. Dai, L. M. Lu*, W. M. Wang, In-situ synthesis of hierarchically porouspolypyrrole@ZIF-8/graphene aerogels for enhancedelectrochemical sensing of 2, 2-methylenebis (4-chlorophenol), Electrochimica Acta, 2019, 311, 114-122.

    [24] Y. Zhang, H. T. Du, Y. J. Ma, L. Ji, H. R. Guo, Z. Q. Tian, H. Y. Chen, H. Huang, G. W. Cui, A. M. Asiri, F. L. Qu*, L. Chen*, X. P. Sun*, Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3, Nano Res. 2019, 12, 919-924.

    [25] M. Y. Xiong, Q. M. Rong, G. Z. Kong, C. Yang, Y. Zhao, F. L. Qu*, X. B. Zhang*, W. H. Tan, Hybridization chain reaction-based nanoprobe for cancer cell recognition and amplified photodynamic therapy, Chem. Commun., 2019, 55, 3065-3068.

    [26] X. X. Guo, H. T. Du, F. L. Qu*, J. Li, Recent progress in electrocatalytic nitrogen reduction, J. Mater. Chem. A, 2019, 7, 3531-3543.

    [27] W. S. Kong, X. Q. Luan, H. T. Du, L. Xia*, F. L. Qu*, Enhanced electrocatalytic activity of water oxidation in an alkaline medium via Fe doping in CoS2 nanosheets, Chem. Commun., 2019, 55, 2469-2472.

    [28] W. S. Kong, Q. Q. Tan, H. Y. Guo, H. Sun, X. Qin*, F. L. Qu*, Photoelectrochemical determination of the activity of alkaline phosphatase by using a CdS@graphene conjugate coupled to CoOOH nanosheets for signal amplification, Microchimica Acta, 2019, 186, 73-80.

    [29] X. Han, M. Han, L. Ma, F. Qu, R. M. Kong *, F. L. Qu*, Self-assembled gold nanoclusters for flfluorescence turn-on and colorimetric dual-readout detection of alkaline phosphatase activity via DCIP-mediated flfluorescence resonance energy transfer, Talanta, 2019, 194, 55–62.

    [30] H. T. Du, R. M. Kong, X. X. Guo, F. L. Qu*, J. Li. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution, Nanoscale, 2018, 10, 21617-21624.

    [31] H. T. Du, X. X. Guo, R. M. Kong*, F. L. Qu*, Cr2O3 nanofiber: a high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions, Chem. Commun., 2018, 54, 12848-12851.

    [32] Q. Q. Tan, R. R. Zhang, W. S. Kong, F. L. Qu*, L. M. Lu*, Ascorbic acid-loaded apoferritin assisted carbon dots-MnO2 nanocomposites for selective and sensitive detection of trypsin, ACS Applied Bio Mater., 2018, 1, 777-782.

    [33] H. T. Du, R. M. Kong, F. L. Qu*, L. M. Lu*, Enhanced electrocatalysis for alkaline hydrogen evolution by Mn doping in Ni3S2 nanosheet array, Chem. Commun., 2018, 54, 10100-10103.

    [34] J. J. Luo, D. Zhao, M. H. Yang*, F. L. Qu*, Porous Ni3N nanosheet array as a catalyst for nonenzymatic amperometric determination of glucose, Microchimica Acta, 2018, 185, 229-234.

    [35] L. Ma, X. Han, L. Xia, R. M. Kong *, F. L. Qu *, A G-triplex based molecular beacon for label-free fluorescence “turn-on” detection of bleomycin, Anayst, 2018, 143, 5474-5480.

    [36] X. P. Zhang, R. M. Kong, H. T. Du, L. Xia, F. L. Qu*, Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions, Chem. Commun., 2018, 54, 5323-5325.

    [37] H. T. Du, L. Xia, S. Y. Zhu, F. Qu, F. L. Qu*, Al-doped Ni2P nanosheet array: a superior and durable electrocatalyst for alkaline hydrogen evolution, Chem. Commun., 2018, 54, 2894-2897.

    [38] X. X. Guo, S. Y. Zhu, R. M. Kong, X. P. Zhang, F. L. Qu*, Fe (TCNQ)2 nanorod array: a conductive non  noble-metal electrocatalyst toward water oxidation in alkaline media, ACS Sustain. Chem. Eng., 2018, 6, 1545-1549.

    [39] Q. Q. Tan, R. R. Zhang, R. M. Kong, W. S. Kong, W. Z. Zhao, F. L. Qu*, Detection of glutathione based on MnO2-nanosheets-gated mesoporous silica nanoparticles and target induced release of glucose measured with a portable glucose meter, Microchimica Acta, 2018, 185, 44-50.

    [40] X. P. Zhang, S. Y. Zhu, L. Xia, C. D. Si, F. Qu, F. L. Qu*, Ni (OH)2-Fe2P hybrid nanoarray for alkaline hydrogen evolution reaction with superior activity, Chem. Commun., 2018, 54, 1201-1204.

    [41] X. P. Zhang, W. D. Sun, H. T. Du, R. M. Kong*, F. L. Qu*, A Co-MOF nanosheet array as a high

    performance electrocatalyst for the oxygen evolution reaction in alkaline electrolytes, Inorg. Chem. Front.,2018, 5, 344-347.

    [42] X. X. Guo, R. M. Kong, X. P. Zhang, H. T. Du, F. L. Qu*, Ni (OH)2 nanopaticles embedded in conductive microrod array: An efficient and durable electrocatalyst for alkaline oxygen evolution reaction, ACS Catal., 2018, 8, 651-655.

    [43] Y. Zhao, J. Gong, X. B. Zhang, R. M. Kong, F. L. Qu*, Enhanced biosensing platform constructed using urchin-like ZnO-Au@CdS microspheres based on the combination of photoelectrochemical and bioetching strategies, Sens. Actuators B: Chem., 2018, 255, 1753-1761.

    [44] H. T. Du, X. P. Zhang, Q. Q. Tan, R. M. Kong, F. L. Qu*, Cu3P-CoP hybrid nanowire array: a superior electrocatalyst for acidic hydrogen evolution reaction, Chem. Commun., 2017, 53, 12012-12015.

    [45] X. P. Zhang, C. D. Si, X. X. Guo, R. M. Kong, F. L. Qu*, A MnCo2S4 nanowire array as an earth-abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions, J. Mater. Chem. A, 2017, 5, 17211-17215.

    [46] H. W. Liu, X. X. Hu, K. Li, Y. Liu, Q. M. Rong, L. M. Zhu, L. Yuan, F. L. Qu*, X. B. Zhang*, W. H. Tan, A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy, Chem. Sci., 2017, 8, 7689-7695.

    [47] S. Xu, H. W. Liu, X. X. Hu, S. Y. Huan*, J. Zhang, Y. C. Liu, L. Yuan, F. L. Qu*, X. B. Zhang*, W. H. Tan, Visualization of endoplasmic reticulum aminopeptidase under different redox conditions with a two-photon fluorescent probe, Anal. Chem., 2017, 89, 7641-7648.

    [48] L. Cui, D. N. Liu, S. Hao, F. L. Qu*, G. Du, J. Q. Liu, A. M. Asiri, X. P. Sun*,In situ electrochemical surface derivation of cobalt phosphate from a Co(CO3)0.5(OH)·0.11H2O nanoarray for efficient water oxidation in neutral solution, Nanoscale, 2017, 9, 3752-3756.

    [49] X. Q. Ji, L. Cui, D. N. Liu, S. Hao, J. Q. Liu, F. L. Qu*, Y. J. Ma, G. Du, A. M. Asiri, X. P. Sun*, A nickel  borate nanoarray: a highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water, Chem.Commun., 2017, 53, 3070-3073.

    [50] L. Cui, F. L. Qu*, J. Q. Liu, G. Du, A. M. Asiri, X. P. Sun*, Interconnected network of shell-core co-bi  pi@cop for efficient water oxidation electrocatalysis under near neutral conditions, ChemSusChem, 2017, 10, 1370-1374.

    [51] R. M. Kong, X. B. Zhang, L. Ding, D. S. Yang, F. L. Qu*, Label-free fluorescence turn-on aptasensor for prostate specific antigen sensing based on aggregation-induced emission–silica nanospheres, Anal. Bioanal. Chem, 2017, 409, 5757-5765.

    [52] X. P. Zhang, R. R. Zhang, A. J. Yang, Q. Wang, R. M. Kong, F. L. Qu*, Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@Au nanocomposite, Microchimica Acta, 2017, 184, 4367-4374.

    [53] X. B. Zhang, R. M. Kong*, Q. Q. Tan, F. Qu, F. L. Qu*, A label-free fluorescence turn-on assay for glutathione detection by using MnO2 nanosheets assisted aggregation-induced emission-silica nanospheres, Talanta, 2017, 169, 1-7.

    [54] R. M. Kong, Y. Zhao, Y. Q. Zheng, F. L. Qu*, Facile synthesis of ZnO/CdS@ZIF-8 core-shell

    nanocomposites and their applications in photocatalytic degradation of organic dyes, RSC Adv., 2017, 7, 31365-31371.

    [55] F. L. Qu, H. M. Pei, R. M. Kong, S. Y. Zhu, L. Xia*, Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets, Talanta, 2017,165, 136-142.

    [56] F. L. Qu, L. Xia*, C. X. Wu, L. J. Liu, G. L. Li, J. M. You*, Sensitive and accurate determination of sialic acids in serum with the aid of dispersive solid-phase extraction using the zirconium-based MOF of UiO-66-NH2 as sorbent, RSC Adv., 2016, 6, 64895-64901.

    [57] F. L. Qu, M. H. Yang*, A. Rasooly*, Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the alzheimer’s related protease β-Secretase, Anal. Chem., 2016, 88, 10559-10565.

    [58] H. M. Pei, Y. Q. Zheng, R. M. Kong, L. Xia, F. L. Qu*, Niche nanoparticle-based FRET assay for bleomycin detection via DNA scission, Biosens. Bioelectron., 2016, 85, 76-82.

    [59] Y. Zhao, Y. Wang, X. B. Zhang, R. M. Kong, L. Xia, F. L. Qu*, Cascade enzymatic catalysis in

    poly(acrylicacid) brushes nanospherical silica for glucose detection, Talanta, 2016, 155, 265-271.

    [60] Y. Zhao, Y. Q. Zheng, R. M. Kong, L. Xia, F. L. Qu*, Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly (acrylic acid) brushes for protein biomarker detection, Biosens. Bioelectron., 2016, 75, 383-388.

    [61] J. J. Luo, A. Rasooly, L. Q. Wang, K. Zeng, C. C. Shen, P. Qian, M. H. Yang*, F. L. Qu*, Fluorescent turn  on determination of the activity of peptidases using peptide templated gold nanoclusters, Microchimica Acta, 2016, 183, 605-610.

    [62] C. Y. Zhao, L. J. Ma, J. M. You, F. L. Qu*, R. D. Priestley, EDTA- and amine-functionalized graphene oxide as sorbents for Ni (II) Removal, Desalin. Water. Treat, 2016, 57, 8942-8951.

    [63] H. M. Pei, S. Y. Zhu, M. H. Yang, R. M. Kong, Y. Q. Zheng, F. L. Qu*, Graphene oxide quantum

    dots@silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen, Biosens. Bioelectron., 2015, 74, 909-914.

    [64] Y. Zhao, Y. Q. Zheng, C. Y. Zhao, J. M. You, F. L. Qu*, Hollow PDA-Au nanoparticles-enabled signal amplification for sensitive nonenzymatic colorimetric immune detection of carbohydrate antigen125, Biosens. Bioelectron., 2015, 71, 200-206.

    [65] R. M. Kong, L. Ding, Z. J. Wang, J. M. You, F. L. Qu*, A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen, Anal. Bioanal. Chem., 2015, 407, 369-377.

    [66] Y. Zhao, Y. W. Yeh, R. Liu, J. M. You, F. L. Qu*, Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst, Solid State Sci., 2015, 45, 9-14.

    [67] F. L. Qu, Y. Zhang, A. Rasooly, M. H. Yang*, Electrochemical biosensing platform using hydrogel prepared from ferrocene modified amino acid as highly efficient immobilization matrix, Anal. Chem., 2014, 86, 973-976.

    [68] R. M. Kong, T. Fu, N. N. Sun, F. L. Qu*, S. F. Zhang, X. B. Zhang, Pyrophosphate-regulated Zn2+-dependent DNAzyme activity: An amplified fluorescence sensing strategy for alkaline phosphatase, Biosens. Bioelectron., 2013, 50, 351-355.

    [69] L. Ding, J. M. You, R. M. Kong, F. L. Qu*, Signal amplification strategy for sensitive immunoassay of prostate specific antigen (PSA) based on ferrocene incorporated polystyrene spheres, Anal. Chim. Acta, 2013, 793, 19-25.

    [70] C. C. Wang, L. Ding, F. L. Qu*, Sensitive electrochemical immunosensor for platelet-derived growth factor in serum with electron transfer mediated by gold nanoparticles initiated silver enhancement, Measurement, 2013, 46, 279-283.

    [71] K. J. Feng, R. M. Kong, S. F. Zhang, F. L. Qu*, A universal amplified strategy for aptasensors: enhancing sensitivity through allostery-triggered enzymatic recycling amplification, Biosens. Bioelectron., 2012, 38, 121-125.

    [72] F. L. Qu, H. Y. Sun, Y. Zhang, H. M. Lu, M. H. Yang*, Electrochemically deposited Pd nanorod array/sol–gel silica thin film for the fabrication of electrochemical sensors, Sens. Actuators B: Chem., 2012, 166, 837-841.

    抖音风 反差

    [73] H. Y. Sun, J. M. You, M. H. Yang*, F. L. Qu*, Synthesis of Pt/Fe3O4–CeO2 catalyst with improved

    electrocatalytic activity for methanol oxidation, J. Power Sources, 2012, 205, 231-234.

    [74] F. L. Qu, H. Y. Sun, S. F. Zhang, J. M. You, M. H. Yang*, Electrochemical sensing platform based on palladium modified ceria nanoparticles, Electrochim. Acta, 2012, 61, 173-178.

    [75] H. Y. Sun, S. G. Zhao, F. L. Qu*, Gold nanoparticles modified ceria nanoparticles for the oxidation of hydrazine with disposable screen-printed electrode, Measurement, 2012, 45, 1111-1113.

    [76] S. F. Zhang*, B. P. Ling, F. L. Qu*, X. J. Sun, Investigation on the interaction between luteolin and calf thymus DNA by spectroscopic techniques, Spectrochim. Acta Part A, 2012, 97, 521-525.

    [77] F. L. Qu, R. Nasraoui, M. Etienne, Y. B. Côme, A. Kuhn, J. Lenz, J. Gajdzik, R. Hempelmann, A. Walcarius*, Electrogeneration of ultra-thin silica films for the functionalization of macroporous electrodes, Electrochem.Commun., 2011, 13, 138-142.

    [78] F. L. Qu, T. Li, M. H. Yang*, Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide, Biosens. Bioelectron., 2011, 26, 3927-3931.

    [79] F. L. Qu, H. M. Lu, M. H. Yang*, C. Y. Deng, Electrochemical immunosensor based on electron transfer mediated by grapheme oxide initiated silver enhancement, Biosens. Bioelectron., 2011, 26, 4810-4814.

    [80] H. Li, Q. Wei, G. L. Wang, M. H. Yang*, F. L. Qu*, Z. Y. Qian, Sensitive electrochemical immunosensor for cancer biomarker with signal enhancement based on nitrodopamine functionalized iron oxide nanoparticles, Biosens. Bioelectron., 2011, 26, 3044-3049.

    [81] L. M. Lu, H. B. Li, F. L. Qu*, X. B. Zhang*, G. L. Shen, R. Q. Yu, In-situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose, Biosens. Bioelectron., 2011, 26, 3500-3504.

    [82] F. L. Qu, M. H. Yang, G. L. Shen*, R. Q. Yu. Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis, Biosens. Bioelectron., 2007, 22, 1749-1755.

    [83] F. L. Qu, M. H. Yang, J. H. Jiang, K. J. Feng, G. L. Shen*, R. Q. Yu. Novel poly (neutral red) nanowire as a sensitive electrochemical biosensing platform for hydrogen peroxide determination, Electrochem. Commun.,2007, 9, 2596-2600.

    [84] F. L. Qu, A. W. Shi, M. H. Yang, J. H. Jiang, G. L. Shen*, R. Q. Yu. Preparation and characterization of prussian blue nanowire array and bioapplication for glucose biosensing, Anal. Chim. Acta, 2007, 605, 28-33.

    [85] F. L. Qu, M. H. Yang, Y. S. Lu, G. L. Shen*, R. Q. Yu. Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA, Anal. Bioanal. Chem., 2006, 386, 228-234.[86] F. L. Qu, M. H. Yang, J. W. Chen, G. L. Shen*, R. Q. Yu. Amperometric biosensors for glucose based on layer-by-layer assembled functionalized carbon nanotube and poly (neutral red) multilayer film, Anal. Lett., 2006, 39, 1785-1799.

    [87] F. L. Qu, M. H. Yang, J. H. Jiang, G. L. Shen*, R. Q. Yu. Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film, Anal. Biochem., 2005, 344, 108-114.

    已授权国度发明专利

    [1] 渠凤丽,孙海宜,田雪. Pd 纳米棒阵列/溶胶—凝胶膜修饰电极的制备算作和愚弄. 专利号:ZL 201210059096.X

    [2] 渠凤丽,尤进茂,丁露. 一种聚苯乙烯包覆二茂铁微球的制备算作和愚弄. 专利号:ZL201310274516.0

    [3] 渠凤丽,赵岩. 一种空壳型聚多巴胺吸附纳米金复合材料偏激制备和愚弄. 专利号:ZL201410394378.4

    [4] 渠凤丽,赵岩. 一种纳米金复合材料免疫传感器的制备算作及愚弄. 专利号:ZL201510071326.8

    [5] 渠凤丽,赵岩. 一种二茂铁/氧化石墨烯/溶胶-凝胶硅膜偏激制备算作和葡萄糖生物传感器. 专利号:ZL 201510145898.6

    [6] 渠凤丽,张小宾,赵岩,裴海盟,杜慧同. 一种 SiO2-DNA 纳米材料偏激制备算作和愚弄. 专利号:ZL 201610322262.9

    [7] 渠凤丽,赵岩,张小宾,裴海盟. 一种 ZnO-Au @ CdS 光电复合材料偏激制备算作和愚弄. 专利号:ZL 201610301476.8

    [8] 渠凤丽,裴海盟,赵岩,张小宾荧光碳点 CDs 溶液、CDs-MnO2 复合材料偏激制备算作和愚弄. 专利号:ZL 201610300884.1

    [9] 渠凤丽,谭青青,裴海盟. 氨基化介孔二氧化硅-葡萄糖-二氧化锰纳米复合材料偏激制备愚弄. 专利号:ZL 201710040594.2

    [10] 渠凤丽,张晓萍. ZnO-CdS@Au 纳米复合材料偏激愚弄. 专利号:ZL201611257038.2

    [11] 渠凤丽,杜慧同,孔荣梅,谭青青. ZnO-CdS 复合材料偏激制备算作和愚弄. 专利号:ZL201611163931.9

     



    创建或修改目录:/www/wwwroot/104.219.215.234/data 失败!
    JzEngine Create File False